T1ρ Magnetic Resonance Imaging to Assess Cartilage Damage After Primary Shoulder Dislocation
نویسندگان
چکیده
BACKGROUND Patients who suffer anterior shoulder dislocations are at higher risk of developing glenohumeral arthropathy, but little is known about the initial cartilage damage after a primary shoulder dislocation. T1ρ is a magnetic resonance imaging (MRI) technique that allows quantification of cartilage proteoglycan content and can detect physiologic changes in articular cartilage. PURPOSE This study aimed to establish baseline T1ρ MRI values for glenoid and humeral head cartilage, determine whether T1ρ MRI can detect glenohumeral cartilage damage after traumatic primary shoulder dislocation, and assess for patterns in cartilage damage in anterior shoulder dislocation. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Nine male patients (mean age, 32.0 years; range, 20-59 years) who sustained first-time anterior shoulder dislocations underwent 3T T1ρ MRI. Five healthy controls (mean age, 27.4 years; range, 24-30 years) without prior dislocation or glenohumeral arthritis also underwent 3T T1ρ MRI. The T1ρ relaxation constant was determined for the entire glenoid and humeral head for patients with a dislocation and for healthy controls. The glenoid and humeral head were divided into 9 zones, and T1ρ values were determined for each zone in dislocated and control shoulders to identify patterns in cartilage damage in dislocated shoulders. RESULTS Average overall T1ρ values for humeral head cartilage in dislocated shoulders were significantly greater than in controls (41.7 ± 3.9 ms vs 38.4 ± 0.6 ms, respectively; P = .03). However, average overall T1ρ values for glenoid cartilage were not significantly different in dislocated shoulders compared with controls (44.0 ± 3.3 ms vs 44.6 ± 2.4 ms, respectively; P = .40), suggesting worse damage to humeral head cartilage. T1ρ values in the posterior-middle humeral head were higher in patients with a dislocation compared with controls (41.5 ± 3.8 ms vs 38.2 ± 2.2 ms, respectively; P = .021) and trended toward significance in the posterior-superior and middle-superior zones (35.2 ± 4.9 ms vs 31.3 ± 1.0 ms and 33.7 ± 5.0 ms vs 30.5 ± 1.3 ms, respectively; P = .056). These 3 humeral head zones are where Hill-Sachs lesions predominate. T1ρ values in the anterior-inferior glenoid zone trended toward significance in patients with a dislocation compared with controls (47.4 ± 5.0 ms vs 43.5 ± 3.5 ms, respectively; P = .073). CONCLUSION Humeral head cartilage sustained greater damage than glenoid cartilage in primary dislocation. T1ρ values were higher in glenohumeral zones associated with Bankart and Hill-Sachs lesions. Widespread initial cartilage damage may predispose patients to glenohumeral arthropathy.
منابع مشابه
Acute Versus Delayed Magnetic Resonance Imaging and Associated Abnormalities in Traumatic Anterior Shoulder Dislocations
BACKGROUND The delayed management of patients with shoulder instability may increase the prevalence and severity of concomitant intra-articular shoulder injuries resulting from persistent subluxations and dislocations. HYPOTHESIS Patients with a longer delay from the initial dislocation event to undergoing magnetic resonance imaging (MRI) or magnetic resonance arthrography will demonstrate mo...
متن کاملAdvanced Imaging in Femoroacetabular Impingement: Current State and Future Prospects
Symptomatic femoroacetabular impingement (FAI) is now a known precursor of early osteoarthritis (OA) of the hip. In terms of clinical intervention, the decision between joint preservation and joint replacement hinges on the severity of articular cartilage degeneration. The exact threshold during the course of disease progression when the cartilage damage is irreparable remains elusive. The inte...
متن کاملT1ρ Dispersion in Articular Cartilage
Objective. This study assessed T1ρ relaxation dispersion, measured by magnetic resonance imaging (MRI), as a tool to noninvasively evaluate cartilage material and biochemical properties. The specific objective was to answer two questions: (1) does cartilage initial elastic modulus (E 0 ) correlate with T1ρ dispersion effects and (2) does collagen or proteoglycan content correlate with T1ρ dispe...
متن کاملT1ρ Dispersion in Articular Cartilage: Relationship to Material Properties and Macromolecular Content.
OBJECTIVE This study assessed T1ρ relaxation dispersion, measured by magnetic resonance imaging (MRI), as a tool to noninvasively evaluate cartilage material and biochemical properties. The specific objective was to answer two questions: (1) does cartilage initial elastic modulus (E 0) correlate with T1ρ dispersion effects and (2) does collagen or proteoglycan content correlate with T1ρ dispers...
متن کاملPersistent Biomechanical Alterations After ACL Reconstruction Are Associated With Early Cartilage Matrix Changes Detected by Quantitative MR
BACKGROUND The effectiveness of anterior cruciate ligament (ACL) reconstruction in preventing early osteoarthritis is debated. Restoring the original biomechanics may potentially prevent degeneration, but apparent pathomechanisms have yet to be described. Newer quantitative magnetic resonance (qMR) imaging techniques, specifically T1ρ and T2, offer novel, noninvasive methods of visualizing and ...
متن کامل